Equipo creador del blog

lunes, 13 de septiembre de 2010

¿Que es el movimiento ondulatorio?

Para empezar a analizar este blog, primeramente se explicara en que consiste el movimiento ondulatorio:
El movimiento ondulatorio se mide por la frecuencia, es decir, por el número de ciclos u oscilaciones que tiene por segundo. La unidad de frecuencia es el hertz (Hz), que equivale a un ciclo por segundo.
Una onda es una perturbación que avanza o que se propaga en un medio material o incluso en el vacío. A pesar de la naturaleza diversa de las perturbaciones que pueden originarlas, todas las ondas tienen un comportamiento semejante. El sonido es un tipo de onda que se propaga únicamente en presencia de un medio que haga de soporte de la perturbación.

El tipo de movimiento característico de las ondas se denomina movimiento ondulatorio. Su propiedad esencial es que no implica un transporte de materia de un punto a otro. Las partículas constituyentes del medio se desplazan relativamente poco respecto de su posición de equilibrio. Lo que avanza y progresa no son ellas, sino la perturbación que transmiten unas a otras. El movimiento ondulatorio supone únicamente un transporte de energía y de cantidad de movimiento.

1.1 Ondas mecanicas


Una onda mecánica es una perturbación de las propiedades mecánicas (posición, velocidad y energía de sus átomos o moléculas) que se propaga a lo largo de un material. Todas las ondas mecánicas requieren: 1) alguna fuente que cree la perturbación, 2) un medio que reciba la perturbación y 3) algún medio físico a través del cual elementos del medio puedan influir uno al otro. El sonido es el ejemplo más conocido de onda mecánica, que en los fluidos se propaga como onda longitudinal de presión. Los terremotos, por otra parte, se modelizan como ondas elásticas que se propagan por el terreno. Por otra parte, las ondas electromagnéticas no son ondas mecánicas, pues no requieren un material para propagarse, ya que no consisten en la alteración de las propiedades mecánicas de la materia (aunque puedan alterarlas en determinadas circunstancias) y pueden propagarse por el espacio libre (sin materia).

1.1.1 Ondas Longitudinales


Una onda longitudinal es una onda en la que el movimiento de oscilación de las partículas del medio es paralelo a la dirección de propagación de la onda. Las ondas longitudinales reciben también el nombre de ondas de presión u ondas de compresión. Algunos ejemplos de ondas longitudinales son el sonido y las ondas sísmicas de tipo P generadas en un terremoto.

Ondas longitudinales son aquellas con vibraciones paralelas en la dirección de la propagación de las ondas; ejemplos incluyen ondas sonoras.
Cuando un objeto corte hacia arriba y abajo en una onda en un estanque, experimenta una trayectoria orbital porque las ondas no son simples ondas transversales sinusoidales.

1.1.2 Ondas transversales


Una onda transversal es una onda en movimiento que se caracteriza porque sus oscilaciones ocurren perpendiculares a la dirección de propagación. Si una onda transversal se mueve en el plano x-positivo, sus, oscilaciones van en dirección arriba y abajo que están en el plano y-z.
Manteniendo una traza comparamos la magnitud del desplazamiento en instantes sucesivos y se aprecia el avance de la onda. Transcurrido un tiempo la persistencia de la traza muestra como todos los puntos pasan por todos los estados de vibración.
Sin embargo para conocer como cambia el desplazamiento con el tiempo resulta más práctico observar otra gráfica que represente el movimiento de un punto. Los puntos en fase con el seleccionado vibran a la vez y están separados por una longitud de onda. La velocidad con que se propaga la fase es el cociente entre esa distancia y el tiempo que tarda en llegar. Cualquier par de puntos del medio en distinto estado de vibración están desfasados y si la diferencia de fase es 90º diremos que están oposición. En este caso los dos puntos tienen siempre valor opuesto del desplazamiento como podemos apreciar en el registro temporal. Este tipo de onda transversal igualmente podría corresponder a las vibraciones de los campos eléctrico y magnético en las ondas electromagnéticas. Una onda electromagnética que puede propagarse en el espacio vacío no produce desplazamientos puntuales de masa. Son ondas transversales cuando una onda por el nodo se junta con la cresta y crea una gran vibración.

1.1.3 Longitud de onda

La longitud de una onda es, como su propio nombre indica, una longitud. Es decir; una distancia. La longitud de una onda es la distancia que recorre la onda en el intervalo de tiempo transcurrido entre dos máximos consecutivos de una de sus propiedades. Por ejemplo, la distancia recorrida por la luz azul (que viaja a 300.000 km/s) durante el tiempo transcurrido entre dos máximos consecutivos de su campo eléctrico (o magnético) es la longitud de onda de esa luz azul. La luz roja, viaja a la misma velocidad, pero su campo eléctrico aumenta y disminuye más lentamente que en el caso de la luz azul. Por tanto, la luz roja avanzará más distancia que en el caso de la luz azul durante el intervalo de tiempo entre dos máximos consecutivos de su campo eléctrico. Por eso la longitud de onda de la luz roja es mayor que la longitud de onda de la luz azul.
Si representamos esa propiedad (el campo eléctrico en el ejemplo mencionado) en una gráfica entonces podemos decir que la longitud de onda la representamos en esa misma gráfica como la distancia entre dos máximos consecutivas. En otras palabras, describe lo larga que es la onda. Las ondas de agua en el océano, las ondas de aire, y las ondas de radiación electromagnética tienen sus correspondientes longitudes de onda.
La longitud de onda es una distancia real recorrida por la onda (que no es necesariamente la distancia recorrida por las partículas o el medio que propaga la onda, como en el caso de las olas del mar, en las que la onda avanza horizontalmente y las partículas se mueven verticalmente). La letra griega λ (lambda) se utiliza para representar la longitud de onda en ecuaciones. La longitud de onda es inversamente proporcional a la frecuencia de la onda. Una longitud de onda larga corresponde a una frecuencia baja, mientras que una longitud de onda corta corresponde a una frecuencia alta.

1.1.4 calculo velocidad de onda

Todas las ondas tienen una velocidad de propagación finita., en la cuyo valor influyen las fuerzas recuperadoras elásticas del medio y determinados factores de la masa del medio: la densidad lineal en las cuerdas; la profundidad del agua bajo la superficie, o el coeficiente adiabático, la masa molecular y la temperatura en el caso de la propagación del sonido en un gas.
En todos los casos la velocidad es constante y, como siempre, será:
v = \frac {\Delta x}{\Delta t}
Pero veamos qué es el \Delta x que la onda recorre en un tiempo \Delta t.
El periodo T será el tiempo que transcurre entre dos instantes consecutivos en los cuales un punto del medio vuelve a poseer las mismas propiedades. Será pues igual T = \frac {1}{f} siendo f la frecuencia del movimiento oscilatorio del punto.
Por su parte el espacio recorrido por la onda en ese tiempo T será la distancia en tre dos puntos consecutivos que se encuentran con la misma propiedad. A esa distancia se le llama longitud de onda, \lambda.
Por lo tanto v = \frac {\lambda}{ T} = \lambda f